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[1] Computing the magnetic drift invariant, L�, rapidly and accurately has always been
a challenge to magnetospheric modelers, especially given the importance of this quantity
in the radiation belt community. Min et al. (2013) proposed a new method of calculating
L� using the principle of energy conservation. Continuing with the approach outlined
therein, the present paper focuses on the technical details of the algorithm to outline the
implementation, systematic analysis of accuracy, and verification of the speed of the new
method. We also show new improvements which enable near real-time computation of
L�. The relative error is on the order of 10–3 when � 0.1 RE grid resolution is used and
the calculation speed is about 2 s per particle in the popular Tsyganenko and Sitnov 05
model (TS05). Based on the application examples, we suggest that this method could be
an added resource for the radiation belt community.
Citation: Min K., J. Bortnik, and J. Lee (2013), A novel technique for rapid L� calculation: algorithm and implementation,
J. Geophys. Res. Space Physics., 118, doi:10.1002/jgra.50250.

1. Introduction
[2] Constrained by the large-scale electric and magnetic

fields of the inner magnetosphere, the dynamics of energetic
particles in the Earth’s radiation belts are most conveniently
expressed and visualized with the aid of three adiabatic
invariants [e.g., Roederer, 1970; Schulz and Lanzerotti,
1974]. In the terrestrial magnetosphere, these adiabatic
invariants are associated with three periodic motions: gyra-
tion around the magnetic field, bounce motion along the
magnetic field line between magnetic mirror points in the
Northern and Southern Hemispheres, and gradient/curvature
drift across the magnetic field, leading to motion around the
Earth. These adiabatic motions are well separated by their
adiabatic time scales, and the adiabatic invariants are con-
served as long as the external field remains quasi-static on
each invariant time scale [e.g., Cary and Brizard, 2009].

[3] Computation of the first two invariants requires only
the local magnetic field (single point) or its magnitude along
the field line (one-dimensional line) where the guiding center
of the particle is located. Computation of the third invariant
(L�) is, however, computationally more demanding because
the particle drift shell in the global magnetic field (and elec-
tric field in general) must be known. Because the global

1Center for Solar and Terrestrial Research, Department of Physics, New
Jersey Institute of Technology, Newark, New Jersey, USA.

2Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, California, USA.

3School of Space Research, Kyung Hee University, Yongin, South
Korea.

Corresponding author: K. Min, Center for Solar and Terrestrial Research,
Department of Physics, New Jersey Institute of Technology, Newark, NJ,
USA. (km224@njit.edu)

©2013. American Geophysical Union. All Rights Reserved.
2169-9380/13/10.1002/jgra.50250

magnetic field is difficult to measure, if not impossible, one
must rely on magnetic field models to obtain this drift shell.
As McCollough et al. [2008] demonstrated, computation of
the drift shell and L� is evidently dependent upon the com-
plexity of the model field used (exceeding well over 10 days
to compute 1 day worth of L� values in the Tsyganenko 02
(T02) model [Tsyganenko, 2002a, b], Table 5 in McCollough
et al. [2008]). These authors also demonstrated that using a
simpler model (i.e., a faster model) with 2% difference in the
model field can produce as much as a 10% difference in the
resulting L�.

[4] Several libraries and methods that compute L� val-
ues are currently available. International Radiation Belt
Environment Modeling (IRBEM) (http://sourceforge.net/
projects/irbem) [Boscher et al., 2012] implements the tech-
nique introduced by Roederer [1970], in which adjacent
field lines with the same magnetic field magnitude at a
mirror point and the same second invariant as the initial
value are iteratively searched until the drift shell is com-
pleted. Recently developed, LANLGeoMag (M. Henderson,
http://www.rbsp-ect.lanl.gov), currently providing the orbits
of Van Allen Probes [Mauk et al., 2012] in L� coordinates,
can compute various magnetic ephemerides including L� in
real time. LANLGeoMag numerically solves the particle’s
guiding center equation of motion to obtain the drift shell
and can achieve an accuracy as high as nine decimal places.
LANL* [Koller et al., 2009; Koller and Zaharia, 2011; Yu
et al., 2012], unlike the previous two methods that are based
on first principles (referred to as physics-based methods),
uses a Neural Network that predicts L� values at a given
parameter set based on the statistical L� values that were cal-
culated at many independent parameter sets. The calculation
speed of this Neural Network is on the order of a 10th of a
second, and the relative error is about 3 � 10–2 (�L* < 0.2)
at geosynchronous orbit [Koller and Zaharia, 2011].
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[5] Recently, Min et al. [2013] (referred to as Paper 1
hereafter) proposed an efficient method of computing L�
values. The method is similar to the technique introduced by
Roederer [1970] in that it uses conserved quantities to obtain
the drift trajectory. The main differences are, however, as
follows: first, unlike the technique of Roederer [1970], the
trajectory is obtained by drawing the iso-energy contour
from the discrete 2-D energy space defined by constant
first and second adiabatic invariants. This approach ensures
that the calculated trajectory is closed if the particle’s drift
shell is so, regardless of the grid resolution. Second, the
functional relationship between Bm and K is approximated
before the L� calculation (Sheldon and Gaffey [1993] used
a polynomial expression and Min et al. [2013] used spline
interpolation), where Bm is the magnitude of the magnetic
field at a mirror point sm and K is the modified invariant
[Roederer, 1970]

K =
Z sm

s0m

p
Bm – B(s)ds. (1)

In this expression, s0m denotes the conjugate mirror point to
sm so that B(s0m) = B(sm) � Bm, and the integration is made
along the guiding field line s. Once the model coefficients
are known, Bm(K) or K(Bm) is approximated from the func-
tional form whenever they are needed, avoiding the repeated
expensive field line tracing.

[6] In Paper 1, the functional relationship between Bm and
K in every magnetic field configuration was calculated at
every x-y grid point in advance. The advantage is that once
tabulation of the coefficients is done, calculating iso-energy
contours is very fast. As described in Paper 1, this approach
is very efficient for multiple calculations of L� values for
a given magnetic field configuration but can be impracti-
cal in applications where a relatively small number of L�
values in many different field configurations need to be com-
puted, for example, to track the orbits of satellites in L�
coordinates in real time. In this technique paper, we address
and focus on the technical improvement that enables near
real-time calculation while not degrading the speed of cal-
culating many L� values. Following a short description of
underlying physics, section 2 describes the algorithm and
implementation in detail, while section 3 analyzes perfor-
mance. Section 5 demonstrates a simple application, and
section 6 summarizes the paper.

2. Algorithm and Implementation
2.1. Formulation

[7] In a static electric and magnetic field, the dynamics
of charged particles are completely described by three con-
served quantities in the guiding center approximation: �, J
(or K), and W, which are linked by

W = qU + m�c2 = qU + mc2
p

1 + 2�Bm/mc2, (2)

where W is the total energy of the particle; U is the electric
potential; � = p2

?
/2mB(s) is the first adiabatic invariant; q

and m are charge and rest mass of the particle, respectively; c
is the speed of light; � =

q
1 + 2�B(s)/mc2 + p2

k
/(mc)2 is the

Lorentz factor; and pk(?) is the momentum parallel (perpen-
dicular) to the magnetic field. The second adiabatic invariant

J =
H

pkds is related to � and Bm through equation (2).
Equation (2) can be approximated by W – mc2 ' mv2

k
/2 +

qU + �B(s) = qU + �Bm for nonrelativistic particles, which
is analogous to the motion of a particle in a one-dimensional
potential well defined by qU + �B(s) [e.g., Roederer, 1970].
Since W remains constant while a particle drifts for the given
� and K, the trajectory is conveniently obtained from the
coordinates of the iso-energy contour. Note that all the vari-
ables in equation (2) are implicitly a function of the position.
In general, U can be an arbitrary function as long as the guid-
ing approximation is valid, but in the Earth’s magnetospheric
environment, the electric field along the field line is usually
assumed to be zero, in which case J can be replaced with a
more convenient form K

p
2m� which only depends on the

field line geometry.
[8] Once the drift orbit of a particle is defined, evaluation

of the magnetic flux ˆ contained within the drift orbit of the
particle is then obtained by integrating

ˆ =
I

A � dl =
Z

A
B � da, (3)

where A is the vector potential of the magnetic field B.
Note that the integration of the vector potential form is taken
along the closed contour defined by the drift orbit. In other
words, ˆ is defined only if the drift orbit of the particle is
closed. The second form of the integration is usually pre-
ferred because the magnetic field is well defined from the
model. The areal integration can be easily performed over
the area A on the polar cap defined by the footpoints of the
guiding field lines [Roederer, 1970]. L� is then the ratio of
ˆ0 to ˆ, where ˆ0 = –2�k0 and k0 is the Earth’s magnetic
moment.

2.2. Functional Dependence of Bm on K: Bm(K)
[9] In order to evaluate equation (1) with constant � and

K at a given field line, Bm and U should be functions of
those parameters. With the equipotential field line, U is only
a function of 2-D spatial coordinates (in this paper, x-y coor-
dinates with z set to zero), and Bm is a function of x-y
coordinates and K (hereinafter the dependence on the spatial
coordinates is implicitly assumed). In general, K(Bm) given
in equation (1) is neither integrable nor invertible. Indeed,
the numerical evaluation of K is the most computationally
expensive part of the technique of Roederer [1970] due to
the necessity of field line tracing.

[10] To approximate the functional dependence of Bm
on K (i.e., Bm(K)) from equation (1), Sheldon and Gaffey
[1993] used a 10th-order polynomial approximation which
results in only 3% maximum deviation, whereas Paper
1 used spline interpolation for the same purpose, result-
ing in 0.1% deviation at maximum (with approximately
1° pitch angle resolution). In this paper, we approxi-
mate Bm(K) using linear interpolation as we found that
the resulting error in L� has the same order of magni-
tude. For evaluation of equation (1), only the real part is
taken into account [Northrop and Teller, 1960; Sheldon and
Gaffey, 1993]. The field line is integrated using a Runge-
Kutta fourth-order scheme. We use fixed step size rather
than adaptive step size (cf. Paper 1) to measure accuracy
and calculation speed in a more consistent fashion. Dur-
ing the field line integration, various auxiliary parameters

2



MIN ET AL.: RAPID L* CALCULATION

1 2 3 4 5

1

2

3

4

5

2.8

2.2

2.0

2.2

2.8

2.2

1.4

1.0

1.4

2.2

2.0

1.0

0.0

1.0

2.0

2.2

1.4

1.0

1.4

2.2

2.8

2.2

2.0

2.2

2.8

i

j

−2 −1 0 1 2

−2

−1

0

1

2

x

y

C
1,1

C
2,1

C
3,1

C
4,1

C
1,2

C
2,2

C
3,2

C
4,2

C
1,3

C
2,3

C
3,3

C
4,3

C
1,4

C
2,4

C
3,4

C
4,1

(a)

C
4,3

(b)

C
4,2

(c) (d)

Figure 1. Schematic diagram of the tracing algorithm. (a) x-y coordinate space and index space. Index
coordinates are on the bottom and left axes, and the corresponding x-y coordinates are on the top and
right axes. The cells are labeled following the definition in the text. The values of our example energy at
the grid nodes are labeled with red color. (b–d) A demonstration of the iteration process. The heavy dot
locates the initial location of the test particle, the dashed circle is the analytic contour line, and the solid
curve is the estimated contour line by the algorithm. The intersections that the contour line passes are
marked with asterisk symbols.

such as loss cone angles at each field line, footpoints on
the Earth’s surface, and magnetic field magnitudes at the
magnetic equator are also obtained.

2.3. Drift Orbit From Iso-energy Contour
[11] The basic concept follows the algorithm of Sheldon

and Gaffey [1993]. The x-y space is discretized, and the total
energy W(xi, yj,�, K) in equation (2) are calculated in this
grid space. Here (x, y) is used to denote the coordinate of an
arbitrary point, and (xi, yj) is used to denote the coordinate of
the grid node at (i, j)th index. Any quantities located at (x, y)
are approximated by areal interpolation using the quantities
at four nodes adjacent to (x, y). For the purpose of descrip-
tion, we define a “cell” Ci,j as a square box that connects
vertices (i, j) – (i + 1, j) – (i + 1, j + 1) – (i, j + 1) – (i, j) in
the index space, and Edges 1–4 as edges of the cell connect-
ing the vertices in that order. In this definition, Ci,j shares
Edge 2 with Ci+1,j, which shares Edge 4 with Ci,j. The same
analogy is applied to other edges. Figure 1a is an exam-
ple of mapping between the index space and rectangular
grid space. Using this general index space frees the depen-
dence on the underlying coordinate system and thus enables
modular implementation.

[12] Figure 1 shows a schematic of the tracing algorithm
(we referenced implementation of contour function in
MATLAB). For demonstration, a simple energy function
W(x, y) =

p
x2 + y2 was assumed in the system (we dropped

� and K dependence), and a particle was initially located at
r0 = 1.5 and �0 = 20° (i.e., x0 ' 1.41 and y0 ' 0.513).
Figure 1a shows the index space and values of W at grid
nodes. The corresponding (x, y) coordinates are shown at the
top and right axes. Each cell is labeled following the above
definition. The steps of tracing are as follows: First, for the
given initial location of the particle in Figure 1b, the initial
cell location is found (C4,3 in this case), and W0 = W(x0, y0)
is linearly interpolated from the neighboring values at the
cell vertices. In this simple example, one can immediately
realize that W0 = 1.5 is the initial radial distance of the par-
ticle location and that the trajectory (or contour line) should
be circular and go through Edges 1 and 3 of C4,3. Mathe-
matically, if the contour line crosses Edge 1 of Ci,j, then the
condition

(W0 – Wi,j) � (W0 – Wi+1,j) < 0 (4)

must be satisfied (conditions for other edges are straightfor-
ward). In our method, the search starts from Edge 1 through
Edge 4. In Figure 1b, the search stops after Edge 1 has been
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Figure 2. (a) Magnitude of the radial component of the magnetic field |Br| on the surface of the Earth is
shown as arrows on the spherical grid. The magnitude of dˆ(�, � ) is represented as the background color
on the sphere. Open circles represent the footpoints of the drift orbit (an equatorially mirroring particle
at approximately 2 RE). (b) Projection of the grid space of the Northern Hemisphere in Figure 2a on
the equator. The open circles represent the footpoints of the drift orbit. The dashed lines define the area
through which the magnetic flux passes. The magnetic flux at each piece of wedge is represented with
color scale. (i, j) index represents the spherical grid and k the footpoints.

tested because it is the first one that satisfies the condition.
Once an edge is found, the coordinate of the intersection
(asterisk symbol) determined using linear interpolation is
recorded, and the algorithm moves to the neighboring cell
that shares the edge that has been found (C4,2; Figure 1c).
Next, since one edge has already been found from the pre-
vious cell, there is only one edge to be found (Edge 1 of
C4,2). From this stage, the visited cells are also flagged. Last,
this process continues until the contour line is closed (if
the tracing algorithm comes back to the initial cell) or the
boundary is encountered. Special care is needed when one
of two terms in equation (4) becomes zero because where
the contour line would go after passing a node is unpre-
dictable (there are three cells that the contour can enter). In
this implementation, we add an infinitesimal number to the
term that results in zero so that equation (4) does not ever
become zero.

[13] It is clear from the above example that not all W val-
ues would be used to trace a contour line and successive
traces are most likely to use the W values that were used dur-
ing the previous traces. In this implementation, we allocate
a memory block for W but defer the evaluation until actual
tracing. While tracing a contour line by the above procedure,
the tracing algorithm checks for the existence of the W value
at a node that the tracing module asked for. If not present, the
algorithm dynamically evaluates and caches it before hand-
ing it over to the tracing module. Otherwise, it returns the
cached W value. Overall, only those W values that are needed
for tracing are evaluated at most once and reused as much
as possible during the entire calculation. In this way, calls to
the expensive evaluation of equation (1) are minimized.

2.4. Magnetic Flux Integration
[14] The scheme of magnetic flux integration in equation

(3) is described next. For the integration, the drift orbit
is mapped on the surface of the Earth. The footpoints of
the orbit can be interpolated from the footpoints obtained
on the nodes during the tracing. For numerical integration
of equation (3), we discretize Earth’s surface and calculate
radial component of the magnetic field Br (only this compo-
nent is needed) at grid nodes, as shown in Figure 2a. The
grid spacing is on the order of a degree in � and less than a
degree in � coordinates where � and � are the usual spherical
coordinates. We keep �� small because of the steep change
in Br with � . Then equation (3) may be written as

ˆ =
I "Z � (�)

0
|Br|r2 sin �d�

#
d� =

I
dˆ(�, � (�)). (5)

Note that the absolute value of Br is used. The inte-
grand dˆ(�i, �j) represents the approximated magnetic flux
through the area defined by the vertical white stripe in
Figure 2a.

[15] At initialization, we calculate dˆ(�i, �j) using trape-
zoidal rule. This approach frees some computational over-
head for evaluation of equation (5) because the last term in
that equation is approximated by a one-dimensional summa-
tion

ˆ '
X

k

dˆ(�k, �k), (6)

once � (�) is given from the tracing. The index k denotes
the kth footpoint of the closed drift orbit. Note that the mag-
netic flux of the Earth’s magnetic field ˆ0 can be obtained
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Φ

−Φ

Figure 3. Schematic of the trapped drift orbit and its mag-
netic flux. The magnitude of the flux through the hatched
area is equal to the magnitude of the flux through the shaded
area.

from equation (5) using � (�) = � , i.e., 2ˆ0 = –
H

dˆ(�,�).
We take this general approach to get ˆ0 because k0 (Earth’s
magnetic moment) is not known in general. One needs
to calculate dˆ only once whenever the magnetic field
configuration changes.

[16] The footpoints of the drift orbit are irregularly
spaced, and thus evaluation of equation (6) needs one more
step. Figure 2b shows the grid space of the Northern Hemi-
sphere projected onto the equator. Let us assume that one
grid boundary at �i is located between the two footpoints, as
in Figure 2b. In order to evaluate the magnetic flux through
the stripe defined by (�k, �k) and (�k+1, �k+1) footpoints, the
area should be separated at �i because the fluxes on both
sides are not the same. Then the flux through the stripe is
the sum of the fluxes through two stripes between �k and �i
and between �i and �k+1. Taking into account the fact that �k
is not on the integral grid, the flux can be approximated by
interpolation as follows:

dˆ(�k+1, �k+1;�k, �k)
=
�
dˆ(�i, �j) +��k(dˆ(�i, �j+1) – dˆ(�i, �j))

�
��k

+
�
dˆ(�i+1, �j) +��k+1(dˆ(�i+1, �j+1) – dˆ(�i+1, �j))

�
��k+1,

(7)

where��k = �i+1 –�k,��k+1 = �k+1 –�i+1,��k = (��k(�k+1 –
�k)/(�k+1 – �k) + �k)/2, and �k+1 = (��k(�k+1 – �k)/(�k+1 –
�k) + �k+1)/2. Generalization of the cases in which there are
more than one � boundary or none between two footpoints is
straightforward. Finally, the total magnetic flux through the
polar cap is evaluated using equations (6) and (7).

2.5. L� in a Magnetic Island
[17] Storm time distortion of the magnetic field can

cause a localized extremum in the total energy distribution
(equation (2)), especially for high pitch angle particles, and
transition of a particle in and out of this localized region can
cause discontinuous jump with sign change in the magnetic
flux [Ukhorskiy et al., 2006]. Although this effect is not our
main interest in this paper, for generality we describe how
to deal with the drift orbit around the island. Figure 3 shows

the drift orbit of a trapped particle in the island mapped
on the polar cap (solid curve, shown in the same format
as Figure 2b). Integration of equation (3) is taken over the
hatched area. From the divergence-free condition, the flux
integrated over the hatched area has the same magnitude as
the flux integrated within the area (shaded area in the figure)
defined by the drift orbit and an opposite sign. If the drift
orbit does not encircle the Earth, then

H
d� = 0. If it is the

case, the resulting L� will have negative sign.

3. Performance Analysis
[18] A performance analysis for the speed and accuracy

of calculating L� is presented in this section. While the for-
mulation itself is applicable to a general equipotential field
line assumption, a constant electric potential in all space
(zero electric field) was assumed for the analysis, which is
generally assumed for L� calculation [e.g., Roederer, 1970].

3.1. Analytic Magnetic Field
[19] For validation, we use a compressed dipole field

[Elkington et al., 2003; Kabin et al., 2007]

B = er

�
2k0

r3 – b1(1 + b2 cos�)
�

cos �

+ e�
�

k0

r3 + b1(1 + b2 cos�)
�

sin � ,

A = e�
�

k0

r2 –
r
2

b1(1 + b2 cos�)
�

, (8)

where k0 is the Earth’s magnetic moment, and parameters
b1 and b2 describe the distortion of the dipole field: b1 can
be interpreted as a quantity related to the interplanetary
magnetic field strength, and b2 is a nondimensional param-
eter responsible for the azimuthal asymmetry of the result-
ing field (influenced, to a large degree, by the solar wind
dynamic pressure). When b1 = 0, the magnetic field becomes
a symmetric dipole field, and L� reduces to the dipole L
value. Despite the simple analytic form, equation (3) may
not be solved analytically if b1 ¤ 0. One special case is
when the pitch angle is 90°. Then the drift path is analytically
given from the initial location (r0,�0) by

r(�; r0,�0) = r0
3

s
k0

k0 – b1b2r3
0(cos�0 – cos�)

. (9)
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Figure 4. Relative error of the numerically evaluated mag-
netic flux to the analytic solution using the asymmetric
magnetic field.�� is set to 2° (red), and 0.5° (blue), and��
is fixed to 2°.
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Figure 5. Relative error of L� computed in the dipole field using both rectangular (red) and cylindrical
(blue) grids as a function of dipole L.�r and�s increase toward the bottom and right panels, respectively.
That is, panels (a), (b) and (c) represent results for �s = 0.05, 0.1, and 0.5 RE, and panels (a), (d), and
(g) represent results for �r = 0.1, 0.2, and 0.5 RE, respectively.

The magnetic flux, ˆ can then be numerically evaluated as
accurate as the machine precision using the first form of
equation (3).

[20] In the following analysis, we use both the dipole field
for all pitch angles and the asymmetric magnetic field with
parameters b1 = 5 nT and b2 = 4 (referred to as the asym-
metric magnetic field hereafter) for 90° pitch angle. k0 is set
to 31,200 nT R3

E.

3.2. Accuracy of Magnetic Flux Integration
[21] The accuracy of the numerical evaluation of the mag-

netic flux integration was estimated using the asymmetric
magnetic field. dˆ(�, � ) in equation (5) with the asym-
metric magnetic field (equation (8)) is dˆanalytic(�, � ) =
1
2 sin2 � (2k0 – b1(1 + b2 cos�))d�. Shown in Figure 4 is the
relative error of the numerically calculated magnetic flux,
Rel Err(�i, �j) = h|�ˆcal,ij – �ˆanalytic,ij|/�ˆanalytic,ijij. Nota-
tion hij denotes the averaging operation along j index. The
result shows that, when the resolution of � coordinate is
on the order of 1°, the numerical error is on the order of
10–3, and the error only weakly depends on the resolution
of � coordinate (not shown) because the magnitude of the
magnetic field on the Earth’s surface is nearly azimuthally
symmetric.

3.3. Accuracy of L�

[22] We analyzed the relative error of the calculated
L� to the exact L� with the dipole field and asymmetric

magnetic field. We also sought the appropriate grid resolu-
tion which balances accuracy and computational cost. Both
cartesian and cylindrical grids were used for comparison.
Spatial resolution (�r,��) and field line integration step
size (�s, corresponding to the resolution in K space) were
set as follows: �r = (0.1, 0.2, 0.5) RE, �� = (1, 2, 5)°, and
�s = (0.05, 0.1, 0.5) RE. For the rectangular grid, �x =
�y = �r. As discussed earlier, the resolution in �� is not a
major source of inaccuracy of the magnetic flux integration.
Shown below are only the cases where �� = 2°. �� was
set to 0.25°.

[23] Figure 5 shows the relative error of the calculated
L� values in the dipole field model. �r and �s increase
in moving toward the bottom and the right, respectively.
Initial locations were regularly spaced from 3 to 9 RE sep-
arated by 0.1 RE in radial distance (r0) and from 10° to 90°
separated by 1° in pitch angle (˛0). The azimuthal angles
(�0) were randomly chosen in order to avoid the bias at
grid nodes. The relative error is defined as Rel Err(r0) =
h|L*

cal(r0,˛0)–L*
exact(r0,˛0)|/L*

exact(r0,˛0)i˛0 , and one standard
deviation is also calculated in a similar manner. We note a
few key features of these results: first, the relative errors,
especially in the first two columns, in the rectangular grid
show a decreasing trend as L� increases. If the absolute
errors were shown, dependence of the error on L� would be
minimized. Second, due to the cylindrical symmetry of the
dipole field, L� values calculated at the radial grid bound-
ary in the cylindrical grid are very accurate (order of 10–5)

6



MIN ET AL.: RAPID L* CALCULATION

3 4 5 6 7 8 9
0

0.05

0.1

Δr=0.1(a)

3 4 5 6 7 8 9
0

0.5

1

1.5 Δr=0.2(b)

3 4 5 6 7 8 9
0

2

4

6

8 Δr=0.5(c)

R
el

 E
rr

 [
×1

0−
3 ]

R
el

 E
rr

 [
×1

0−
3 ]

R
el

 E
rr

 [
×1

0−
3 ]

Dipole L

Cart
Cyl

Figure 6. Relative error of L� computed in the asymmetric
magnetic field using both rectangular (red) and cylindrical
(blue) grids as a function of dipole L. �r increases toward
the bottom panel, and �s is set to 0.1 RE.

as in Figures 5a and 5b. On the other hand, the error at the
non-integral grid is comparable to that of the rectangular
grid, as in Figures 5d and 5e (note peaks between the radial
grid boundaries). This caused the oscillatory behavior in the
relative error for �r � 0.2. We tried weighted interpolation
based on the dipole geometry but did not show significant
improvement. The oscillatory behavior for the rectangular
grid is less prominent because of the pitch angle depen-
dence of the calculated L� (as will be discussed shortly)
and the random choice of the initial azimuthal coordinates
(the cylindrical grid will not be affected by the azimuthal
coordinates in the dipole field). Third, the standard devia-
tion in the rectangular grid is noticeable compared to that
in the cylindrical grid (essentially zero). Although not heav-
ily investigated, we suspect that the areal interpolation of
the field line quantities may cause the pitch angle depen-
dence. On the other hand, the areal interpolation in the
cylindrical grid essentially becomes 1-D linear interpola-
tion in the azimuthal direction on which the dipole field has
symmetry. Last, we also used finer grid spacing, but there
was no significant improvement in accuracy (not shown),
which may indicate an inherent upper limit (� 10–5) of the
achievable accuracy.

[24] Figure 6 shows the relative error of the calculated L�
values in the asymmetric magnetic field. �r increases mov-
ing down the panels. The initial locations were distributed in
radial distance from 3 to 9 RE separated by 0.1 RE. �0 and �0

coordinates were set to 0° (noon) and 90°, respectively. Note
that �s is fixed to 0.1 RE because the dependence on �s is
meaningless for the equatorial particles. The result indicates
that the relative error behaves as expected for the symmetric
case. Due to the asymmetry, the errors for both grids behave
similarly, and thus the absolute errors would be less depen-
dent on the L� as well. The oscillatory behavior in the
relative error for the coarser grids is also clear due to the
same reason as the previous result. The clear oscillation for
the rectangular grid is because the particles were traced from
the same local time (noon meridian).

3.4. Calculation Speed
[25] The calculation speed is estimated next for sev-

eral Tsyganenko magnetic field models [Tsyganenko, 1987,
1989, 1995; Tsyganenko and Sitnov, 2005, 2007; Sitnov
et al., 2008] with the dipole field as control. Since the dipole
field is simplest, the algorithm is the major contributing fac-
tor to the calculation speed in this field. In other words, the
calculation speed in the dipole field forms the baseline, and
the speed above this line is solely due to the model field. A
standard laptop with 2.8 GHz Intel Core 2 Duo processor
was used for all the tests. The calculation speed is defined
as total elapsed time per particle and core. �s = 0.1 RE
and �r = 0.2 RE were used for the grid resolutions (which
we think is a reasonable choice for accuracy versus speed).
Figure 7 shows the speed as a function of model. The tests
were done using 2 day Van Allen Probe orbit (Figure 8).
In the dipole field, the speed is about 6 ms, which is the
baseline. For the T96 model, it takes about half a second,
and for the T02 and TS05 models about a second. For the
TS07 model, it takes an order of magnitude longer than the
TS05 model. Based on this result, the new L� calculation
method may be faster than any other physics-based methods
currently available.

4. Scientific Application: L� Coordinate of
Satellite Orbit

[26] Two major uses of the L� coordinate are (1) real-
time satellite tracking in the L� coordinate and (2) mapping
between invariant space and phase space. The application
of the former is shown in this section, and that of the lat-
ter is briefly discussed in the next section. For the purpose
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Figure 7. Calculation speed of a single trajectory as a func-
tion of model for rectangular (square symbol) and cylindrical
(open circle) grids. The exact speed at the symbols is labeled
within the plot.
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Figure 8. (a) Calculated L� coordinates of the spacecraft
orbit using the cylindrical grid as a function of time and
pitch angle. (b) The magnitude of the difference between two
methods with the cylindrical grid. (c) The magnitude of the
difference between two methods with the rectangular grid.

of demonstrating the capability of a real-time computation,
we calculate the L� coordinate of the 2 day long Van Allen
Probe-A orbit. For the performance benchmark, we compare
our calculated L� values to those of LANLGeoMag. LANL-
GeoMag uses the T89Q field model (T89 field model with
Kp = 2) among other various field models. In this test, T89Q
model was used (for other models, model parameters were
not explicitly given). �s = 0.1 RE and �r = 0.2 RE are used
for the grid resolution in our method.

[27] Figure 8a shows the calculated L� coordinates, and
Figures 8b and 8c show the magnitude of L� difference
between two methods for the cylindrical and rectangular
grids, respectively. The deviation is about 0.1 at maximum
(around L� � 3) and is largest at lower pitch angles for both
coordinate systems. It took about 1350 and 1413 s for the
cylindrical and rectangular grids, respectively, to produce
the results.

5. Discussion
5.1. A Comparison Between Our New Method and the
Technique of Roederer [1970]

[28] Even though the development of the method was
motivated by (U, B, K) coordinates [Whipple, 1978], we real-
ized that this method is essentially an extension of the
technique of Roederer [1970]. Both methods are based on
the same underlying physics and assumptions. One major
difference is from the drift orbit tracing. Figure 9 demon-
strates the tracing technique of Roederer [1970], stating that
the field lines that have the same initial invariants and the
magnitude of the magnetic field at mirror points are itera-
tively searched by more or less arbitrarily probing adjacent
field lines separated by a small distance (step size). The
advantage of our tracing algorithm is that a fully closed
drift orbit is always guaranteed to be found regardless of
the grid resolution. This is somewhat difficult in the tech-
nique of Roederer [1970] because of error accumulation at
each iteration.

5.2. Mapping Between L� and x-y Coordinates
[29] In diffusion simulation, it is often required to con-

vert phase space density in invariant space to differential
flux in phase space for comparison with observations. In
this section, the performance gain of our technique is further
demonstrated when calculating the mapping between L� and
x-y coordinates with a complex magnetic field model.

[30] When the number of calculations become large, the
speed ultimately scales solely by the complexity of the
model field. In practice, the magnetic fields are often approx-
imated from the tabulated field vectors in a cubic grid space
(e.g., field interpolation in MHD simulation). Due to the
dimensionality, pre-allocating a chunk of memory block and
precalculating the vector field in advance may be too costly.
As shown in section 2.3, most of the magnetic fields at
grid nodes would not be consumed. By taking the similar
approach for the drift shell tracing, we show the speed and
accuracy, without describing the implementation.

[31] Figure10a shows the error as a function of spatial
location. The error is defined as the averaged magnitude
(in pitch angle) of difference of the calculated L� values
between the analytic field and interpolated field. Since the
purpose of this test is to examine the deviation resulted from
using the interpolated field, the accuracy of L� values of the
control is not an issue here as long as the same tracing pro-
gram is used. The asymmetric magnetic field was used for
the analytic field. �x = �y = �z = 0.1 RE was used for the
cubic grid resolution, and initial locations were evenly dis-
tributed from 2 to 9 RE separated by 0.2 RE in radial direction
and from 0° to 360° separated by 4° in azimuthal direction.
Pitch angles from 10° to 90° were evenly divided into 17
bins. The order of error is 10–3, and the large error occurs at
the tail where the field lines are stretched.

[32] Figure 10b shows the mapping from x-y coordinates
to L� values under the latest TS07 field model using parame-
ters during the prestorm period (for model parameters, http://
geomag_field.jhuapl.edu/model/). Initial locations were the
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Figure 9. Schematic showing the technique of Roederer
[1970]. Dots are probing points, and asterisks are approxi-
mated equatorial intersection of the shell field lines. Figure
format is similar to Figure 1.
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Figure 10. (a) Absolute error in calculated L� using the interpolated field. Undefined L� values (due
to losses through the magnetopause and ionosphere) were excluded from the average. (b) Calculated L�
of 88° pitch angle using the interpolated TS07 field model as a function of x-y coordinates. The dashed
circles are at 6.6 RE.

same as before. The result of 90° (88° to be precise) pitch
angle particles is only shown. The 90° pitch angle parti-
cles often fail the bifurcation test due to the scratchy field
line from the interpolation. The elapsed time was 1312 s
when both CPU cores were fully loaded. According to the
result in Figure 7, it would have taken 19 days to produce
the result. The calculation speed demonstrates the significant
performance gain of our technique described in section 2.3,
especially for a complex magnetic field model. Such a scal-
ability is an added advantage of our method and enables us
to calculate a large number of L� values as often required
for intercomparison between the simulation result and the
observation.

6. Summary
[33] The algorithm and implementation of a new, efficient

method for calculating L� have been thoroughly described.
While this method may be regarded as an extension of the
technique of Roederer [1970], it has a major difference from
the latter technique in that our technique of tracing in a finite
grid is free from error accumulation and ensures the exis-
tence of a closed drift orbit. The main improvement over
the method described in Paper 1 results from eliminating
the “preparation step” in which the functional relationship
between K and Bm is calculated in advance. Realizing that
not all W values are needed for tracing a drift trajectory, the
new method instead evaluates K(Bm) only at necessary grid
points at the time of tracing.

[34] From the results of performance analyses, we believe
that the new method is able to calculate L� values faster than
any other physics-based methods currently available. The
method can transform the satellite orbit from configuration
space to L� space in near real time and is highly scalable to
a large number of L� values with reducing incremental cost.
Despite a possible inherent limit due to the use of a finite
grid, we suggest that this method could be an added resource
for the radiation belt community.
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