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Abstract He ions contribute to Earth’s ring current energy and species population density and are
important in understanding ion transport and charge exchange processes in the inner magnetosphere.
He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition
Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on
geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to
518 keV) morphology of ring current He ions between geomagnetic storm injection events. The overall He
ion abundance during the first nine months of RBSPICE observations, the appearance of a persistent high
energy, low L-shell He ion population, and the temporal evolution of this population all provide new insights
into trapped ring current energy He ions. These data provide a unique resource that will be used to provide
verifications of, and improvements to, models of He ion transport and loss in Earth’s ring current region.

1. Introduction
Measurements from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments
on the Van Allan Probes spacecraft provide the opportunity to determine, over extended time and spatial
intervals, the hydrogen, helium, and oxygen ion abundances at ring current energies in Earth’s inner magne-
tosphere. The near-equatorial orbits of the Van Allen Probes [Mauk et al., 2012] are particularly useful for the
characterization of the fluxes of these ion species. Thus, RBSPICE was designed and implemented to provide
information on the composition and dynamics of Earth’s ring current during all levels of geomagnetic activ-
ity [Mitchell et al., 2012]. Energy spectra and relative abundance measurements for trapped ions over various
energy ranges and for the dominant ionic species (H, He, and O) have been reported by a number of inves-
tigators since early in the space age, including for example, Krimigis [1963], Frank [1967], Smith and Hoffman
[1973], Konradi et al. [1973], Ejiri et al. [1980], Williams [1981], Lundin et al. [1980], Gloeckler et al. [1985],
Krimigis et al. [1985], Hamilton et al. [1988], Kistler et al. [1989], Roeder et al. [1996], Daglis et al. [1999], Fu et al.
[2001], Ebihara et al. [2002], Greenspan and Hamilton [2002], Fu et al. [2003], and Dandouras et al. [2009].

Of particular interest herein is the morphology of He ions during geomagnetic quiet times in the inner
magnetosphere, which is important for providing contemporary baselines for magnetospheric species
of trapped particles, for a better understanding of abundances in disturbed intervals, and for testing our
understanding of ion source, loss, transport, and charge exchange mechanisms. The first quiet time He
ion model was presented in Spjeldvik and Fritz [1978]. However, this study could not test the validity of the
model with experimental data for He ions below 1 MeV. Later, quiet time Active Magnetospheric Particle
Tracer Explorers (AMPTE)/CCE/charge-energy-mass (CHEM) He ion measurements across the 1–300 keV
energy range were modeled by Sheldon and Hamilton [1993] and Sheldon [1994]. Of particular interest in
these later studies was the overprediction of He ions at L-shells of ∼4 and at energies >100 keV (which was
also reproduced in model results of Spjeldvik and Fritz [1978]), which could not be satisfactorily explained
and is still unresolved.

This paper reports near-equatorial He ion abundance measurements from the RBSPICE instrument during
geomagnetically quiet intervals in late 2012 (following instrument commissioning) and 2013. The data pre-
sented herein, all from Van Allan Probes spacecraft B, show the abundance, L-shell, and energy morphology
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Figure 1. (top) Hourly Dst values as reported from the World Data Center (WDC) for Geomagnetism, Kyoto, Japan. Time
is measured in days from 1 January 2013. (bottom) He ion flux (particles/(second per square centimeter)), between the
65 keV and 518 keV energy range, as measured by the RBSPICE instrument aboard the Van Allan Probes spacecraft B,
binned into 30 min, 0.1 L-shell realizations. L here is determined by a dipole L model. The measurements below L∼2.5
early in the mission demonstrate the original data window of RBSPICE, which was subsequently reduced due to
instrument constraints.

of He ions during geomagnetic quiet times. Of unique interest is the appearance of He ions at energies
above ∼100 keV and at L∼4, which were predicted in previous models. Furthermore, we note that this par-
ticular population seems well suited to testing He ion transport and loss mechanisms due to its temporal
and spatial variability.

2. Observations

The He ion abundances reported are from the time of flight versus total energy (TOFxE) instrument feature
[Mitchell et al., 2012] and thus cover the ∼65 keV to ∼518 keV energy range. The RBSPICE instrument was
not designed to differentiate between He ion charge states (i.e., He+ and He+2). However, the data focused
on herein corresponds to geomagnetic quiet times and are therefore dominated by He+ (i.e., solar wind
injected He+2 should be quite low during these periods). The fluxes are integrated over all pitch angles as
measured by the six “telescopes” (i.e., independent fields of view) of the RBSPICE instrument. All measure-
ments shown here are well above the instrument noise floor and are statistically significant, as based on
Poisson counting statistics.
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Figure 2. Two, sample, quiet time averages of He ion flux (particles/(second per square centimeter per kiloelectron volt))
displayed in an energy/L-shell distribution. L here is determined by a dipole L model. Dashed black lines represent the
first adiabatic energy trace for a 100 keV particle located at L=6.

Figure 1 (bottom) shows the total (i.e., omnidirectional and energy integrated) He ion fluxes (particles/
(second per square centimeter)) in the measured energy range as a function of dipole L-shell beginning
shortly after instrument commissioning (1 November 2012) and running to day 200 (19 July) 2013. The data
have been placed in 30 min and 0.1 L-shell data bins, thus smearing high flux values associated with injec-
tions at higher L-shells at spacecraft apogee. The hourly Dst index for the same time interval is shown in

Figure 3. (top) Hourly Dst values as reported from the WDC for Geomagnetism, Kyoto, Japan. Time is measured in days
from 1 January 2013. (bottom) Sequence of 1 day averages of He ion flux (particles/(second per square centimeter
per kiloelectron volt)) displayed in an energy/L-shell distribution between 2013 day of year (DOY) 69 and 72. L here is
determined by a dipole L model.
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Figure 4. (top) Hourly Dst values as reported from the WDC for Geomagnetism, Kyoto, Japan. Time is measured in
days from 1 January 2013. (bottom) Sequence of 5 day averages of He ion flux (particles/(second per centimeter per
kiloelectron volt)) displayed in an energy/L-shell distribution between 2013 DOY 90 and 110. L here is determined by a
dipole L model.

Figure 1 (top). Data gaps are the result of changes in instrument configuration and in calibration upgrades
of in-flight and processing software. Enhancements of the He ion abundances, often lasting for several
days, are clearly seen to occur at the times of geomagnetic disturbances as indicated by the low values of
the Dst index.

Of particular interest are two intervals of extended geomagnetic quiet time in late 2012 and early 2013: days
−28 to −18 (i.e., day 339 to 349, 2012) and days −8 to 12 (i.e., day 359, 2012 to day 12, 2013). Days −17 to
−9 (i.e., day 350 to 358, 2012) are not included in this period due to the short, intense He ion enhancement
observed between L∼5 and 6 (and also seen in the Dst index). Shown in Figure 2 are contour plots of the He
ion fluxes (particles/(second per square centimeter per kiloelectron volt)) as a function of energy and dipole
L-shell for these two periods. Two distinct populations of He ions are evident, specifically an enhanced
concentration at higher energies (∼400 keV and higher) at L∼4.0, and another enhanced concentration at
lower energies (∼80 keV) at L∼6. A “saddle point” between the He ions groups is observed around L∼5.0
and between ∼300 keV and ∼400 keV. The He ion population varies somewhat in L-shell and energy range
between the two data intervals. The abundance contours trend toward and follow the dashed black lines,
which represent a sample first adiabatic energy trace for a 100 keV particle located at L=6. This structure of
the He ion fluxes suggests inward radial motion (and energization) of the particle populations [e.g., Schulz
and Lanzerotti, 1974], which were likely initially injected into the higher L-shell region at lower energies.

While Figure 2 depicts the quiet time, “steady state” structure of the ring current He ions, Figure 3 demon-
strates the evolution of “quiet time” He ions on a daily timescale. These quiet time data are from a 4 day
interval days 69–72, just prior to a large geomagnetic storm on day 76 (17 March). On day 69, the He ion
fluxes are enhanced in the same two general regions as in Figure 2. However, the high-energy population
is located at a higher L-shell. Over the course of the following 3 days, the higher-energy He ion population
decays in flux, while the lower energy population flux increases. The saddle point between the two regions
remains relatively stationary.

Evolution of the “quiet time” He ion morphology is even more evident just after an injection event, as shown
between days 90 and 110 in Figure 4. Each panel consists of a 5 day average of the He ion fluxes as a func-
tion of energy and dipole L-shell. The first 5 day interval (days 90–95) shows a large concentration of He ions
at moderate L values following the geomagnetic storm event (i.e., as seen in the Dst index). He ion fluxes
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were highly concentrated in a broad energy and spatial range of ∼70 keV to ∼300 keV and L∼4.0 and L∼5.8,
respectively. The day 95–100 interval shows evidence of radial transport via diffusion of the He ion fluxes
to higher energies and lower L values. In the day 100–105 interval, the lower energy He ion fluxes suddenly
increase in magnitude (at L∼5.7), while the lower L value, higher-energy fluxes decrease further in inten-
sity. It is this time interval that the two He ion regions can be best differentiated and a clear saddle point
identified. Finally, in the interval day 105–110, prior to another geomagnetic storm, the intensity of the
higher L-shell, lower energy fluxes appear to move to L∼6, and the lower L-shell fluxes continue to decrease.

3. Discussions and Conclusions

As the data presentations show, the RBSPICE instrument provides information on the nonstorm time, ring
current energy range, He ion fluxes in Earths magnetosphere. The He ion abundance values of Figure 1
compare well to values reported in prior literature (i.e., about 1/100 of the measured proton flux; work in
progress). Figures 2, 3, and 4 show two He ion populations, one around ∼400 keV (and higher) at L∼4.0 and
another around ∼80 keV at L∼6 that are seen to persist throughout quiet intervals.

The He ion distributions shown in Figure 2 agree (qualitatively) well with the steady state modeling results
of Spjeldvik and Fritz [1978], although that work seems to have overestimated the low L-shell, low-energy He
ion population. This is likely due to the relatively large flux of He+2 used in that study as a boundary condi-
tion set at L= 7, which then converted to He+ via charge exchange mechanisms. The saddle point observed
in Figure 2, referred to as a “hole” in Spjeldvik and Fritz [1978], is also well resolved both in data and model.
Spjeldvik and Fritz [1978] argue that this saddle point is a consequence of a complex balance between ion
transport, loss, and charge exchange. The two distinct regions of He ions and the saddle point observed
in Figure 2 is also observed in data published from CRRES/magnetospheric ion composition spectrometer
(MICS) He+ (but not He+2) data [Fu et al., 2001, 2003]. However, their existence is not commented on.

The high-energy, low L-shell region and saddle point also appear in the models of Sheldon and Hamilton
[1993] and Sheldon [1994]. However, as discussed at length in Sheldon [1994], the AMPTE/CCE/CHEM He
ion measurements did not show such a high-energy, low L-shell population, and this led to a large discrep-
ancy between subsequent model and data comparisons. It is currently unclear why the AMPTE/CCE/CHEM
He ion measurements do not show this population, and one speculates if the issue was associated with
counting statistics. The data presented herein, however, clearly show this population and verify these ear-
lier model efforts and CRRES/MICS data. For completeness, this population is also clearly present when we
transform the data presented in Figures 2, 3, and 4 into phase space distributions as functions of L-shell and
magnetic moment to directly compare to the AMPTE data presented inSheldon and Hamilton [1993] and
Sheldon [1994].

The He ion energy/L-shell structure of Figure 2 and the temporal/spatial evolution shown in Figures 3 and
4 beckons a revisit of the modeling efforts of Sheldon and Hamilton [1993] and Sheldon [1994], where a
Fokker-Planck equation, utilizing updated parameterizations, can be used to study the evolution of He ions
in Earth’s ring current. Such an effort could provide needed closure on the steady state and slow temporal
evolution of He ions in Earth’s ring current.

These Van Allen Probe results show that trapped He ions exist for extended intervals in the magnetosphere
and with important spatial distributions. Such ions form a dynamic component of the quiet time radia-
tion belts, particularly at the higher L values. The origins of these trapped He ion particles is a subject long
debated in magnetosphere studies [e.g., Daglis et al., 1999] and is not the subject of this report. However, if
substorm injections events are frequent enough such that He ion loss times exceed the substorm frequency
intervals, then these higher L-shell He ions can form a source contributor of ring current ions. Future studies
will examine extended intervals of geomagnetic quiet in order to understand further the persistence and
lifetimes of high L-shell trapped He ions in Earth’s magnetosphere.
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